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General Equations of  Motion for Test Particles in 
Space-Time with Torsion 
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The momentum and spin equations of motion for test particles possessing 
different spins in space-time with torsion are derived from the most general 
functional form of A~ . The same kinds of equations in general relativity and 
in Kibble's gauge theory of gravitation are special cases of our equations. 

1. THE M O S T  GENERAL FUNCTIONAL FORM OF ~ 4  

It is well known that the Lagrangian density 3? in the theory of 
gravitation can be split into two parts: 

~G is the gravitational part, which contains only gravitational fields; ~fM 
is the part  relating to matter and interaction, which contains matter fields 
and gravitational fields due to the interaction between matter fields and 
gravitational fields. In the general case, the gravitational fields are represen- 
ted by the vierbein field hi(x ) and the frame connection field F~(x).  The 
metric field g~(x) can be expressed by 

g , , , , ( x )  ' Y = h . (x )h . (x )~(x )  (1) 
i and the holonomic connection field F ~ ( x )  is related to h~(x) and F~(x)  

by (Chen and Deng, 1988) 

r r  = ' ' J h,~ (x)[h ~,~(x) + rj~ (x)h ~(x)] (2) 
In the space-time with torsion the most general functional form of 37M 

may be denoted by 

~ M ( x ) = ~ M [ q , ( x ) , o J , ( x ) ,  h i ( x ) ,  ' 'J 'J h . ,~ (x ) ,  r . ( x ) ,  r , . ,~(x) ,  

~,~ (x) ,  r ' ( x ) ]  (3) 
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where 4,(x), "Ou(x), and yi(x) denote matter fields, the local Minkowski 
metric, and local Dirac matrices, respectively. The matter fields may be 
tetrad tensors (include scalars and vectors) or tetrad spinors, but I suppose 
they are coordinate scalars; if they are only tetrad tensors, then y~ matrices 
will not appear in ~M. 

The functional forms of &aM given by 

~M(x)  = ~ , [ ~ ( x ) ,  r ' u h~,(x), F~,(x), r//j (x), yi(x)] (4) 

' h , , , ~ ( x ) ,  n,~(x), ~,~(x)] (5) ~M(X) =~M[O(X),  ~b,.(X), h . (x ) ,  i 

~M(x) = ~ [ 0 ( x ) ,  r  h',,(x), n~(x)] (5') 

are all special cases of  (3); (4) represents ~M in Kibble's gauge theory of  
gravitation (KGTG); (5) and (5') represent ~A4 of nonscalar fields and 
scalar fields, respectively, in general relativity (GR). In KGTG and in GR, 
s can also be expressed by 

~M (X) = ~Z'?M [@(X), h~(x)Oio(x), rl~j (x), y'(x)]  (6) 

where 

Ol,.(x) = r  + �89162 r  (7) 

for KGTG (Kibble, 1961), tr U are the generators of  the Lorentz group; and 

q%(x) = qt ~,(x) + �89 ) (8) 

for the general case of GR (Weinberg, 1972) after choosing appropriate 
coordinates, o -~j = r/ikr/J~o'k~. For the scalar field in GR, cr U = 0, (8) reduces 
to 

~ . ( x )  = r (8') 

We can write (Kibble, 1961) 

h~(x)tfil~,(x) = 6~' 0,~(x) + �89 - [ ~ '  - h~(x)] o~tp(x) (9) 

for KGTG and write 

h~(x)Ol~(x) = t3~ ~b,~.(x) + �89 qj(x) 

- [ 8 ~  - h i ( x ) ]  O.O(x) ( 1 0 )  

for GR; these relations tell us that the couplings between matter fields and 
gravitational fields in KGTG are represented by F~(x)o- U O(x), and 

[t~' - h i (x) ]  O~.O(x), 
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but those in GR are represented by 

h~(x)h)(x)h~x,.(x)~iJO(x) 

and [6~ - h~(x)] O.O(x). 
We must point out that as (3) is the most general form of ~M, it can- 

not be expressed by (7); besides [6~-h~(x)]O.O(x), Fg(x)cro. O(x), or 
~t X /j  hk (x)hi (x)hja,.(x)~ @(x), (3) could include types of coupling terms such 

as bR(x)lO(x)f or etc.; R(x) and T~a(x) are the 
scalar curvature and the torsion tensor of space-time, respectively, and b 
and c are coupling constants. The Lagrangian density of scalar field given 
by Birrel and Davies (1982) 

~ g  (x) = �89 1/2{gt'~'(X)~),~(X)~b,~,(X) -- IN ~ q- r 

is an example of (3). In this paper I do not intend to study the concrete 
forms of coupling between matter fields and gravitational fields, but am 
only interested in the general equations of motion deduced from (3) for 
test particles. 

Another special case of (3) is 

~M(X) = 3?M[~b(x), t)..(x), h2(x), h~,.(x), o F~,(x), n0(x), yi(x)] (11) 

which is discussed elsewhere (Chen and Jiang, 1989). 

2. SYMMETRY AND IDENTITIES 

Suppose that the action integral 

I = f ~M(x) d 4 x  

is invariant under both the local Lorentz transformation of the tetrad 
frame and the general coordinate transformation simultaneously. Let the 
infinitesimal variations of these transformations be 

e,(x) ~ e'i(x') = e,(x) - e""(x)8~ ~7.,ej (x) (12) 

and 

x "  - , x  '" = x "  + ~ ( x )  (13) 

where e'"(x)  [ = - e ' m ( x ) ]  and ~:~'(x) are local parameters which specify 
the local Lorentz transformation of the tetrad frame {ei} and the general 
coordinate transformation, respectively. The induced variations of 0(x),  
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~ , . ( x ) ,  ' ' r ~ ( x ) ,  '~ h..a(x), F.a  (x), no h~(x), (x), y~(x), and ~M(X) are 
1 m n  60(x)  = ~e (x)(rm.~P(x, (14) 

a o . q , ( x )  = ' ~"" , m~ ~e,~ (x)o'.,.~l,(x)+~e (x)o'm.O,~(x)-~,t.(x)O,~(x) (15) 
i m n  i j u i 6hu(x) = e (x )Su .~7 . j jh . (x ) -  ~..(x)h~(x) (16) 

i m n  i 8h~,;,(x) = h~(x)+ m,, i j e x (x)a[m~7.b e (x)6p.~7.]jhu,a(x) 
i v i u i - r  (17) - ~,.~(x)h~(x) (,a(x)h~.v(x) 

ij m n  i k j  m n  j i k  aF~(x)=e (x)~u.n.lkr.(x)+e (x)~u.n.jff,~(x) 
v ij m n  i j 

- - E , .  ( X ) 8 [ m ~ n ]  - r  (18) 
ij m n  i k j  j i k  

t~r~,a(X ) = e , a  (X){6[mnn]kr .(x)+6t.~nn]kr . ( x ) }  

m n  i k j  j i k  

~, ij v ij m n  -- r ( x ) r ~ ( x )  -- G ( x ) r  ~,x (x) -- e .x(X) 

i j v /j x 8[ , .6 . ] -  ~: A(x)C~,~(x) (19) 

a n o  ( x )  = 0 

87~(x) = 0 

02fM + O2fM O~FM i 
6~M(X) = ~  &b(x) ~ 6 t p , . ( x ) + ~  6h.(x) 

O~M i O~M 8Fu(x) 8 h ~ , ~ ( x ) + ~  it 
-t Oh~,,(x) " or . (x )  

OSeM ~ (x) (20) q ~j 6F~,~ 
a r . , . ( x )  

The square brackets [. ] in (16)-(19) denote the operation of antisymmetriz- 
ation. The Lorentz group generators ~rm. appearing in (14) and (15) are 

~rm.= �89 y,] for spinor fields 

cr,~, = 0 for scalar fields 

[ o - , , , . ] j =  ' 6,. r/.j - 6. r/mj for vector fields, etc. 

equations (16) and (18) can be derived from the following relations: 

Vi(x) = h~(x) V"(x)  

V [ A x ) = '  V .(x) + r j .  (x) W(x) 

r ~ ( x )  = . J ~ r L ( x )  
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equations (15), (17), and (19) can be derived from the relation 

8( A . (x )  ) = ( SA(x) ),. - r (x)A,~(x) 

where V*(x) [or V'(x)]  is a vector field and A(x)  is a geometric object field. 
The sufficient condition of the action integral invariance is the relation 

(Corson, 1953) 

aLPM + sr163 = 0 (21) 

Putting (14)-(20) into (21), using the independent arbitrariness of e="(x), 
E r n n  / x m n  v ,~ ~x), e ~(x) ,  ~,~(x), and ~,~,(x), and utilizing the field equation 

6q* O~b axe, / / \ 0--~,~/= 0 (22) 

and the definitions 

~ := ahi~ = Oh~ -Ox - -T  \ohm,-----7] 

~F--~ 2 - -  - -  (24) 
L 0 r 7  ox* \or,TAJ 

O~M 
~ .  : . . . .  S,.. ~O (25) 

oq/~ 

N~" := -\0-~7,. h.~ - - -  hm~ (26) 

IO~M . 0 5 f M F ~ ) + 2  0 (0~ra ]  (27) 
~ : " : = - 2 t ~ F " ~  OV:,~ Ox ;~ \oF.,----~'"~] 

and the antisymmetric property of F~ (Yasskin, 1979), 

F~ - ~i - - F .  ( 28 )  
we obtain the following identities: 

0 
r..~mZ (29) 

~"m. = ~"r . .+~%.+~%~ (30) 

0~M 0~M 
m n  r r l n  ar,..~ or~,. (31) 

o(o . ) 
ox \orX---2 (32) 
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and 

where 

oh i~,x oh i~a, 
(33) 

�9 R i .  / z  

All o f ~ ,  ~ (or Z v. = g ~ ) ,  and ~m. are energy-momentum tensor 
densities of  the matter field, but in different indices; i, m, n, and other Latin 
letters are frame indices; ~, u, cr, and other Greek letters are coordinate 
indices. ~ " or Z~.  may be asymmetric in the general case; therefore, in 
this paper, I consider the possible existence of  an asymmetric energy- 
momentum tensor density and consider its symmetric circumstance as a 
special case. Equation (25) is the ordinary definition of the spin density of  
the matter field in field theory and ~ .  is called the ordinary spin density. 
The ~ .  is the generalized spin density and ~ .  and ~ .  are additive spin 
densities caused by the vierbein field and the frame connection field, 

/ z  - -  / ~  respectively. For scalar fields |  - 0, but ~ m n  ~'~ 0 in general in the present 
theory. 

Since ~M does not depend on x explicitly, we have 

a a ~  a~M a~M i 

a ~ .  i a~M r a ~  F. ,a.  (34) 
' a F ~  ' aF.,A 

Using (22)-(24), equation (34) can be transformed into 

0 ~ ,  g',~ , ~ (35) - h,~, F.~,~, = ~ h ; . ~ .  - ! c r  
Ox" ~ ,  Oha,.i , OFot,i 2~'~iJ Jt l'z,v 

From (35) and (32) and utilizing (31), (33), (29), (28), and (2), we can get 
the "conservation law" of  the energy-momentum tensor density: 

. . l ~ , D 0  = 0  (36) 
t , , ,u .  

where 

R~.  ro  r6  ~..W i wkJ ~,i p k j  
l u ,  lx --at ~ , v ~ X  k lz l  u --at k v X ~  

For KGTG,  ~ = ~ ,  the "conservation law" (36) reduces to 

~, ~. 1,~'o~ = 0  (37) 
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and for GR, F ~  = {,~}, ~ = 0, the "conservation law" (36) reduces to 

{~ ~ , .  - ~ '  ~ = 0 ( 3 8 )  

If  the energy-momentum tensor density is symmetric, (36) and (37) 
become 

. ~ s o " l ~ _ ! o r -  U =0  (39) 

2 o  _ t  ~ ~q~"- ! ~ , o i ~  = 0 (40) 

respectively, since the following relations hold (Hehl et al., 1976): 

O" o" O" o 'b~ /,co" r . .={. .}+K.~,  K~ = - K ~  (41) 

o ~ o ,  o ,  o"  ( K ~  = T . ~ -  T ~ -  T~u) 

3. M O M E N T U M  EQUATION OF MOTION  AND SPIN 
EQUATION OF MOTION 

The so-called test particle is a small body used to test the gravitational 
action; it is assumed that both the space extension of the test particle and 
its self-field of  gravitation are very small and can be neglected in the 
discussed problem. The test particle may be a macroscopic body or a 
microcosmic particle; it can be represented by a certain matter field such 
as the Dirac field for the electron, the Maxwell field for the photon, the 
density field p(x) for a macroscopic fluid, etc. Except for the scalar particles, 
all the other elementary particles possess intrinsic spin. Although many 
macroscopic bodies usually have no net intrinsic spin, their spin density is 
always nonzero since they are composed of  elementary particles; moreover, 
there are other bodies having net intrinsic spin, for example, neutron stars. 
Considering all this, I shall regard the test particle as possessing intrinsic 
spin in general. For the sake of simplicity I suppose that the test particle 
is not acted upon by other interactions (e.g., electromagnetic force) except 
for the gravitational force. 

If quantum effects may be neglected, the motion of a test particle in 
space-time can be described by a curve of four dimensions, i.e., a world 
line. The differential equation of a test particle's world line is called its 
equation of  orbit. The orbital motion of  a test particle is a nonquantum 
phenomenon in essence, so the world line is only a conditional concept for 
a microcosmic particle. However, the applicable range of the momentum's 
equation of  motion is wider than that of the equation of orbit. 

I use the method of Papapetrou (1951) and make the following 
definitions. 
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Momentum: p. = ~ Zo d3x. 
Ordinary spin angular momentum: S o = j ~o  d3x. 
Generalized spin angular momentum: C o. = ~ ~o d3 x. 
Additive spin angular momentum caused by Vierbein field: bq= 

d x. 
Additive spin angular momentum caused by frame connection field: 
dij = ~ ~ o  d3x. 
Now, for a test particle, we can get its momentum's equation of motion 

dp. F~ dx"  dx ~ 
dt ~P~--d-t  ~_ou r~ (42) = 2--u~'~u dt 

from (36), and get its spin's equation of motion 

dCo . . . .  dx~ l t dx~" 
. . . .  F:~ C, )  dt - znE'n"]~'P~ dt + ( F ~ C ~  dt (43) 

from (29), where t is the chosen coordinate time. Equations (42) and (43) 
can be written as follows: 

v ~ ,~ dx ~ dx ~ 
dPdA ~- ( F ~ - 2 T ~ ) p  - ~  = 2"~-iJtx~"~l-ou I"~iJ'dA (42') 

dCo ~ _ _  c, t dx~ 
dA =2h[mF"lh"]~P d,~ +(G''- 'o+rj"c') dx (43') 

respectively, where 
v - -  t J o -  " " / J  A ~ o t  p - g  p~, ciJ=~ikg~JICkl, T,~.=g. ,~g ~ x  

A is a parameter along the world line of the test particle. 
If the energy-momentum tensor density is symmetric, (42), (43), (42'), 

and (43') become 

dp~ ( or} dx~ !oo. ,o dx~ (44) 
d t -  t z v  P r  = 2 ~ ' ~ ' ~ q  dt 

dCo t t dx~" (45) 
dt = (Fi~Cu+Fj~'Cit) d--~ 

dp ~ _ {  v ] '~dx" l l ~  r ~  (44') 
dA o.lz ~ P --~= ~*-ij.'- dA 

dCo" I I dx ~ (45') 
dA = (Fi~.C~+Fj.C.) dA 

respectively. 
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From (30) and the definitions of Cq, So, bo, and d~j we get the relation 

Cij = Sij q b U -t- dij (46) 

This relation and the other formulas obtained in this paper mean that the 
value of a particle's spin would be influenced by a gravitational field in our 
theory. Whether this influence exists must be determined by further experi- 
mental research. 

In relativistic mechanics the 4-momentum is defined by 

dX v 

p~ = moc dA ' dA2 : d s 2  = g ~  dx~ dx~ (47) 

for a massive particle and by 

d x  tz 
p~ = h ~ (48) 

for a massless (e.g., photon) particle (Landau and Lifshitz, 1975). Putting 
(47) into (42') and (44'), we get 

d2x ~ dx ~ dx ~ 1 . dx  ~ 
ds 2 ~-(F~.-2T~.)  ds ds - 2 m o c  R~ 'C ' J  ds (49) 

d2x~{} ~- u dx  ~ dx ~ 1 l ~  C 'j dx~ 
ds 2 ~rlx ds )Is 2too c - ' ' J~ -  t/s (50) 

which are the equations of orbit for a massive particle according to whether 
the energy-momentum tensor density is asymmetric or symmetric. Putting 
(48) into (42') and (44'), we get the corresponding equations of orbit for 
massless particle: 

d 2 x  *" dx ~ dx ~ 1 ~ ~j dx  ~ 
dZ 2 + ( F ; . - 2 T ~ )  t)Z dh 2h R ~  dA (51) 

d2xV { v } d x  r  1 R~ c u d x U  
dA 2 + cr/x dA dA -2h-- 'J~'--  dA (52) 

4. CONCLUSION 

The momentum equations of motion [(42) or (42'), (44) or (44')] and 
the spin equations of motion [(43) or (43'), (45) or (45')] for test particles 
possessing different spin in space-time with torsion have been derived from 
the most general functional form of LeM given by (3). The application ranges 
of these equations are very wide; I indicate the following special cases. 
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4.1. The Case of  KGTG 

In this case, b U = 0, d 0 = 0, % = s0, then, c o in (42)-(45) [or (42 ' ) - (45 ' ) ]  
will be reduced to s 0. I f  the test particle is a scalar particle, s o = O. 

4.2. The Case of  GR 

In this case, c U = 0, d o = 0, and 

s;j = - b  0 ~ 0 for particle with spin 

s o = b 0 = 0 for scalar particle 

Then, c o in (44), (45) [or (44'), (45')] will be reduced to zero. Incidentally, 
the energy-momentum tensor density in G R  is always symmetric,  so 
(42), (43) [or (42 ' ) , (43 ' ) ]  are identical with (44), (45) [or (44'), (45')] 
respectively. 

4.3. Case of  the Photon and the Quantum of the Yang-Mil ls  Field in 
Space-Time with Torsion but without the Action of  Torsion 

The photon and the quantum of  the Yang-Mil ls  field are vector parti- 
cles. I f  these particles do not act directly by torsion, then their Lagrangian 
density in space-time with torsion must be also represented by 

h~,(x), ~To(X)] ~M(X):c~M[I~(X), ~,,u. ( X )  ' i i h~,~(x) ,  

in order to be compatible both with the local gauge invariance and minimal 
coupling (Yasskin and Stoeger, 1980; Chen and Jiang, 1989). Therefore, in 
this case, the equations of  motion for the photon and the quantum of  the 
Yang-Mil ls  field are the same as in GR. 

4.4. The Case with 
~M(x)  = ~eMI~(x), ~,.(x), hAx),' h.,~(x),' FAx),~J n~(x), ~, ~ (x)l 

In this case d 0 = 0 and c 0 = so+ b 0. As an example of  this case, the 
equations of  motion for the photon and for scalar particles are discussed 
in detail elsewhere (Chen and Jiang, 1989). 
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